机械之家讯:来自美国Scripps研究所的国际著名蛋白质组学专家 John R. Yates 教授应邀出席了近日召开的第五届亚洲与大洋洲质谱会议暨第33届中国质谱学会学术年会,并作大会报告。Yates 教授在他的报告的前半部分中详细介绍了蛋白质组学的发展历程和未来的发展方向。
鸟枪法蛋白质组学的演变
提到蛋白质组学的发展,自然饶不开质谱技术的发展。在过去的100年里,质谱技术可以说是以指数级的速度迅猛发展。这种进步可以部分归功于机械、电子和计算机工业领域的创新。但一些偶然的颠覆性突破,可能才是质谱技术的发展在质上取得飞跃的根本原因。大规模蛋白分析或是蛋白组学之所以成为可能,正是由于这些颠覆性的突破而导致的。
当质谱具备分析有机分子的能力的时候,自然而然的,分析氨基酸和小肽就成为了下一个目标。由于这些两性和极性分子缺少挥发性以及早期质谱质量范围的限制,导致分析工作十分复杂。为了解决这个问题,人们巧妙地利用衍生化的办法来使这些被改性的氨基酸和小肽气化。同时利用EI源来碎片化这些分子,以实现肽段测序。随着高分辨率、精确质量仪器的出现,精确质量被作为一个工具用于小肽的测序。而对于小肽分析能力的获得使得我们可以利用酶解和酸解的办法对蛋白进行分析。通过产生重叠的肽碎片,蛋白的序列就可能被重建。很显然,这种策略将产生非常复杂的肽段混合物,从而对当时的分离技术(GC)提出了更高的要求。那时,最大的挑战来自于如何省去繁琐的衍生化步骤而实现肽的离子化,否则科学家的分析对象只能局限于那些高丰度蛋白。
一个颠覆性的突破发生在1981年,也就是快原子轰击(FAB)的发展。这是第一次使得人们可以无需对肽(其分子量可以达到 〉1-2KDa)进行改性就可以完成很稳定的离子化。而这也对质谱仪器的质量范围提出了更高的要求。很快,这种离子源技术就被Hunt等人整合到了串联质谱上,从而为肽段测序提供了一种稳定的方法。
尽管FAB-MS和FAB-MSMS对于肽和蛋白分析而言是一个巨大的突破,但它们最主要的缺陷是很难直接与液相分离连接。1989年Fenn等人验证了电喷雾离子化(ESI)技术在蛋白分析方面的应用。除了可以电离大分子蛋白以及进行准确的质荷比测量外,这个方法的另一个突出特点就是实现了在大气压下的电离。这就简化了液相分离与质谱之间的接口。而在ESI这一颠覆性的创新出现后的几年里,FAB就渐渐被边缘化了。尽管和基质辅助激光解吸附离子化(MALDI)技术类似,围绕着这项技术的最初热情是集中在完整的蛋白质量的测量上,但是ESI的一个明显优势是通过与色谱技术(如:NanoLC)联用来完成更高效率的肽和蛋白的测序。
仪器控制语言(ICL)是由Finnigan MAT最先开发出来的一项具有颠覆性的创新技术。它具有一个初级的“智能”水平,可以实现自动数据采集、数据交互和根据实时数据对仪器操作进行控制。ICL事后被证明可以提高MSMS和其他实验的效率,从而使得大规模蛋白组学成为可能。现在它已成为所有用于蛋白质组学的质谱仪器的一项标准技术。
“鸟枪法”应用于蛋白质组学是一个很重要的里程碑。在用鸟枪法为基因组测序的时候,先将基因组DNA打断,分段测序,然后利用计算机重组在一起,从而确定一个生物的基因组序列。鸟枪法在蛋白质组研究中的应用方式与此相类似。首先将蛋白质混合物降解成肽段的混合物,再送入质谱进行分析,从而得到各肽段的质量数。为了得到更丰富的序列信息,质谱仪会选取某些肽段进行再次破碎(即二级质谱),得到更小的氨基酸序列片段。检索软件根据二级质谱信息与相应的数据库匹配,可得到肽段的确切序列,进而拼接成混合物中各蛋白质的完整序列,从而鉴定各蛋白。因此可以说,串联质谱对于“鸟枪法”在蛋白组学中的应用是至关重要的,它们使得大规模、高通量的数据分析成为可能。这对于传统的蛋白分析方法而言,是颠覆性的。
大规模数据分析技术的发展使对蛋白混合物直接分析成为可能,人们可以即时收集和破译数以千计的串联质谱谱图。由于样品处理过程的简化,使得样品损失降到最低,从而可以达到一个很高的效率和灵敏度。这一点对于那些始终暴露于新的、活性表面的低丰度蛋白分析尤为重要,因为这种暴露会导致大量的样品损失。
随着分析蛋白复合物和亚细胞区室方法的建立,下一步的目标自然就对准了开发对完整细胞分析的方法。全细胞分析是一个很复杂的工作。开发全细胞分析方法的挑战主要来自于两个方面:首先,需要开发合适的消解蛋白混合物的策略;其次,要有好的方法来分离这些复杂的肽混合物。在全蛋白组分析中,对溶液中蛋白的初始消解是一个非常关键的起始点,因为高效且完全的消解对于获得高的蛋白组覆盖度至关重要。而蛋白组分离的目的则是为了尽可能在最短的时间里提高峰容量和分离效率。要实现这一个目标其实是很困难的。如果峰宽过窄,由于质谱仪扫描速度的限制,可能导致肽峰的丢失。因此,分离效率必须要和质谱仪器的扫描速度匹配。良好的分离对于降低离子抑制以及提高动态范围是很重要的,同时,它也推动了一次分析过程的蛋白序列覆盖度的不断提高。
鉴定蛋白功能
蛋白组学的另一个重要任务是鉴定在一个基因序列里被编码的蛋白的功能和作用。鸟枪蛋白组技术使人们能够通过一些新的策略,而快速获取这些信息。这些策略包括:基于“牵连犯罪” 概念的方法;根据活性将蛋白富集再鉴定;全细胞或细胞器分析等。
定性蛋白组学的最终目的是完成对所有存在蛋白的全覆盖。要达到这个目的,所有的蛋白需要被适当地消解并可溶。使用多蛋白酶消解可以提高序列覆盖度。此外,像电子转移解离(ETD)这样的新方法可以使人们有效地碎片化更大尺寸的肽段。高的序列覆盖度有益于分辨蛋白的亚型。对于复杂的混合物,例如细胞或组织裂解液,离子抑制和动态范围是两个挑战。如果能够很好地降低或消除离子抑制,那么就可以更加均一地实现肽的离子化,从而改善定性和定量分析。动态范围方面的挑战除了与离子抑制有关外,主要是和质谱仪器的检出限有关。除了离子抑制和动态范围外,第三个问题是质谱的峰容量。针对这个问题,可采用的一个变通的策略就是所谓的“数据独立采集(DIA)”,它已成为一个商品化技术。随着质谱仪器扫描速度变得越来越快,采用DIA技术进行鉴别也就变得越发可行。我们可以看到,每一代串联质谱较之其上一代都会有显著的改进,这推动着鸟枪蛋白组学向获得一个完整蛋白组发展。不过,如何判定何时算是我们获得了一个完整蛋白组依然是很困难的。此外,获得一个完整蛋白组的关键是要有一个合理的实验策略,而非采用一个耗时的“蛮力搜索”策略。
生物体系的调控
可用于修饰蛋白的分子结构非常之多。这些修饰有些是具有明显的调控功能的,有些则只是改变蛋白的化学特性,而没有明显的调控功能。具有调控功能的修饰通常是可逆的,一个例外是蛋白水解过程。
质谱在很久以前就被用于对蛋白修饰的分析。对于高度规则的分子(如蛋白)进行质量测量是鉴定那些意料之外的新增分子结构的一个很直接的方法。随着基因组测序开始出现以及蛋白鉴定方法的发展,修饰鉴定的基本思路开始有所变化。Yates等人证明了可以采用数据检索方法通过串联质谱数据来鉴定翻译后修饰。快速破译修饰蛋白或肽的串联质谱图和明确修饰位点的能力使人们可以进行相应的大规模分析工作,从而更好地了解修饰的生物学机理。此外,大规模修饰位点的分析已经拓展到包括所有可被富集的修饰,这也同时促进了新的富集方法的发展。
蛋白定量
稳定同位素标签(SIL)的发明使人们产生了利用质谱数据进行分子定量的想法。再者,对于体内代谢研究而言(例如:确定氨基酸的重要性),SIL也是定量质谱的一个必要要素。
早期的蛋白质组定量涉及到双向凝胶电泳的使用,但这一方法对于蛋白染色有着很高的要求。而质谱技术与双向凝胶电泳的结合使得人们可以比较容易地对凝胶上的蛋白进行分析和鉴定,从而也使双向凝胶电泳在生物学研究中得到充分利用。基于质谱技术的蛋白鉴定方法大大减少了鉴定时间和工作量,同时也可以实现蛋白鉴别和定量的结合。
为了得到更加准确的定量方法,SIL方法与质谱被结合在一起,以用于完整蛋白的分析。一些采用稳定同位素代谢标记方法或使用含标签的试剂(如稳定同位素标记的氨基酸)进行共价标记的手段随之出现。1999年,Gygi等人提出了一种不同的方法,即同位素编码的亲和标签(ICAT)。尽管ICAT方法在概念上很完美,但在实际当中还是有不少缺陷,例如:其鉴别和定量常常是基于一个多肽/蛋白分子,从而导致统计学分析很受局限。此外,由于为了富集需要使用基于抗生素蛋白的体系,从而使多肽回收也很困难。
体内标记整个动物
将稳定同位素标签引入到人体和动物体内是为了用于测量分子的最终代谢产物。代谢分析通过痕量同位素标记的氨基酸和诸如同位素比率质谱技术来实现。代谢稳定同位素标记对于研究动物生物学而言是个非常有力的方法。整体动物标记使研究课题可以涉及到较之细胞系更为复杂的体系,并可以更好地反映有机体生物学机理。动物体的稳定同位素标记使人们可以使用组织或器官进行疾病研究。此外,组织和器官实际上是许多不同细胞类型的集合,换句话说是系统的系统,所以最终,研究目的会指向理解这些细胞的合集是究竟如何发挥它们的功能的上来。
定量与鉴别的悖论
对于鸟枪蛋白组学而言,定量与鉴别同时进行的策略会产生一个自相矛盾的悖论。在一个全模式下对一个复杂体系中的蛋白进行鉴别,这需要快速的扫描仪器和高效的色谱以实现MSMS峰容量的最大化。仪器应当能够快速地采集一个肽段的数据,然后移向下一个新的肽段。而肽段定量则需要采集到足够多的数据点,从而实现准确测量两个形态之间的差别。“明快”对“持久”,这两个相互矛盾的需求导致了人们会对用于定量的数据质量做出一定的妥协,原因在于针对肽段鉴别的检出限往往要超过定量限。另一个问题是在定量实验中,对于“存在或不存在”的测量。为了对一个测量结果进行后续计算,大多数软件工具要求被重和轻同位素标记的肽段均要存在。而当不同标记的肽段比例超过10:1时,定量效率就会开始下滑,一些大的变化可能会被漏掉。一些非标记方法,例如光谱计数,能够更好地测定一些大的变化,但是它们的准确度不如标记方法。
未来展望
为了充分了解人体生物学,科学家们必须要开始了解蛋白的亚型和修饰的功能,这也对相应的分离和测量技术提出了更高的要求。为了满足这一需要,我们需要可靠的方法来实现对完整蛋白的分子量和序列的测试。“由上而下”的质谱技术目前仍然在发展当中,我们期待着未来能有突破性的创新出现,以降低质谱的成本和复杂性,从而能使更多的人使用它。而就当下的过渡阶段而言,在过去的几年里,针对5-10 KDa的肽段的测序和表征,质谱分析器已经有了长足的进步,不过能够将蛋白切到5-10 KDa肽段的蛋白酶剪切或化学剪切方法仍需进一步发展。更高分辨率的质谱结合ETD能够使得对于这些中等尺寸的多肽的表征更加容易。
蛋白复合体代表了细胞内的一个更高阶的结构。确定蛋白亚型或被修饰后的形态如何影响蛋白复合体的功能或活性将是下一步的工作。同时,我们也期待质谱仪器能够通过科技进步和激烈的商业竞争而继续以一个较快的速度发展。为了给蛋白质组学提供更好的工具,质谱仪器的扫描速度和灵敏度将会得到进一步提升。机械之家为您提供最全面的钢管,板材,铝管,铝材,板材钢管品牌的装修知识点和各种板材钢管的导购与在线购买服务,拥有最便宜的板材钢管价格和最优质的售后服务,每天都有秒杀的抢购活动哦!敬请登陆机械之家:http://jixie.jc68.com/